Syntheses and single-crystal structures of novel soluble phosphonato- and phosphinato-bridged titanium oxo alkoxides

Gilles Guerrero,^a Michael Mehring,^a P. Hubert Mutin,^{*a} Françoise Dahan^b and André Vioux^a

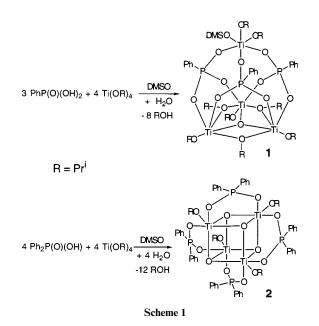
^a UMR CNRS 5637, Chimie Moléculaire et Organisation du Solide, Université de

Montpellier II, cc 007, 34095 Montpellier cedex 5, France. E-mail: mutin@crit.univ-montp2.fr

^b UPR CNRS 8241, Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, 31077 Toulouse cedex 4, France

Received 25th March 1999, Accepted 9th April 1999

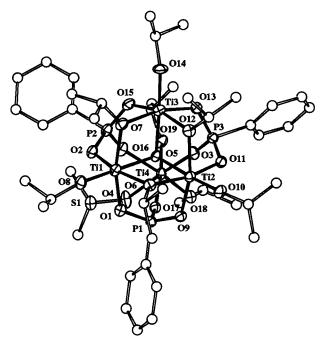
The reactions of PhP(O)(OH)₂ or Ph₂P(O)OH with Ti(OPrⁱ)₄ in DMSO give the soluble tetranuclear complexes $[Ti_4(\mu_3-O)(OPr^i)_5(\mu-OPr^i)_3(PhPO_3)_3]$ ·DMSO 1 or $[Ti(\mu_3-O)-(OPr^i)(Ph_2PO_2)]_4$ ·0.5DMSO 2, the first examples of phosphonato- and phosphinato-bridged titanium oxo alkoxides, which have been characterised by single-crystal X-ray diffraction.

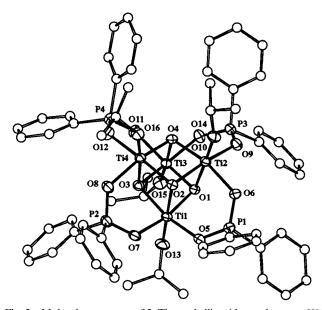

Metal oxo alkoxides are not only models of the molecular species present at the initial stages of the sol–gel processing of metal alkoxides, but they also serve as molecular building blocks for the design of oxide materials by sol–gel processing and metal–organic chemical vapour deposition (MOCVD).¹⁻³ The reactivity towards hydrolysis and condensation of metal oxo alkoxides is lower than in the parent alkoxides, and may be further decreased *via* replacement of some of the alkoxide ligands by carboxylate, β -diketonate or sulfonate ligands. Furthermore, the use of such ligands allows the introduction of organic functionalities for organic–inorganic hybrid materials applications.^{4,5}

Recently, we proposed the use of organophosphorus acids as coupling molecules to prepare organic–inorganic hybrids by a sol–gel route, as the P–C bond is stable towards hydrolysis and P–OH groups readily condense with M–OR groups. A two-step synthesis was used, involving first the condensation between the organophosphorus acid and a metal alkoxide, followed by hydrolysis–condensation of the remaining alkoxy groups.⁶ When titanium isopropoxide and phenylphosphonic acid were used as precursors ³¹P NMR investigations pointed to the formation of a soluble intermediate. In the present work, we report the structural characterization of this intermediate and of another compound obtained starting from titanium isopropoxide and diphenylphosphinic acid (Scheme 1).

To our knowledge, compounds 1 and 2 are the first examples of titanium oxo alkoxides modified by tridentate phosphonate (RPO_3^{2-}) or bidentate phosphinate ($\text{R}_2\text{PO}_2^{-}$) ligands, whereas modification by bidentate carboxylate groups has been extensively studied.^{7,8} Layered titanium phosphates and phosphonates are well known,⁹ and polymeric titanium alkoxo-phosphinates have been reported;¹⁰ however, very few molecular structures of titanium complexes with phosphato,^{11,12} phosphonato ^{13,14} or phosphinato¹⁵ ligands have been reported to date, whereas these ligands have been widely used to synthesise hybrid polynuclear oxo anions such as vanadates ¹⁶ and molybdates.¹⁷

The Ti–O–P bonds in 1 and 2 result from the condensation of P–OH and Ti–OPrⁱ groups.¹¹ Most likely, the Ti–O–Ti bonds are formed by partial hydrolysis of Ti–OPrⁱ groups as non-hydrolytic condensation with elimination of an ether would require temperatures above 150 °C. In the case of 1, the sources of water could be DMSO and/or phenylphosphonic acid even after careful drying,¹⁵ although condensation of P–OH groups in the presence of Ti(OPrⁱ)₄ cannot be completely ruled out. Nevertheless, in order to obtain 2 in a good yield, water had to be added to the reaction mixture.[†]




The molecular structures of 1 and 2 and selected bond distances and angles are given in Figs. 1 and 2.[‡] Compound 1 is made up of discrete clusters that consist of four titanium atoms, three tridentate phosphonato groups, three µ-isopropxy groups and one μ_3 -oxygen atom. The Ti-O-P core is best described as being based on a six-membered Ti₃(µ-OPrⁱ)₃ ring adopting a chair conformation with alternating isopropoxy groups and six-coordinated Ti atoms; these Ti atoms are linked via a μ_3 -O atom [Ti- μ_3 -O-Ti 104.49(8)-106.08(8)°] leading to a Ti₃O₄ fragment. The markedly distorted octahedral geometry at Ti(1), Ti(2), and Ti(3) is built up by two bridging μ -OPrⁱ groups [Ti-O 2.014(2)-2.044(2) Å], one terminal OPrⁱ group [Ti-O 1.770(2)–1.781(2) Å], two phosphonato-oxygen atoms [Ti–O 1.947(2)–1.984(2) Å] and the μ_3 -oxygen atom which is *trans* to the terminal OPrⁱ groups [Ti-O 1.949(2)-1.976(2) Å]. The trans O-Ti-O angles are in the range 162.27(8)-175.49(8)°. Each phosphonato group bridges two Ti atoms of the six membered ring and Ti(4) [Ti(4)-O 1.955(2)-2.095(2) Å]. In addition to these three phosphonato-oxygen atoms, the distorted octahedral geometry at Ti(4) [O-Ti-O trans angles 171.24(8)-172.56(8)°] involves two terminal OPrⁱ groups [Ti(4)-O(18)/ O(19) 1.833(2)/1.786(2) Å] and a coordinated DMSO molecule [Ti(4)–O(4) 2.059(2) Å].

The molecular structure of **2** is best described as a distorted cube consisting of a Ti₄O₄ core with the titanium and oxygen atoms occupying alternating corners. The Ti atoms show a distorted octahedral geometry [*trans* O–Ti–O angles 161.61(7)–177.29(7)°] built up by one terminal OPrⁱ group [Ti–O 1.759(2)–1.790(2) Å], two phosphinato oxygen atoms [Ti–O 2.002(2)–2.040(2) Å] and three unsymmetrically bonded μ_3 -oxygen atoms. The Ti– μ_3 -O bonds *trans* to the isopropxy groups are

J. Chem. Soc., Dalton Trans., 1999, 1537–1538 1537

Fig. 1 Molecular structure of **1**. Thermal ellipsoids are shown at 60% probability. For clarity, hydrogens atoms are omitted and carbon atoms are represented by open circles. Selected interatomic distances (Å) and bond angles (°) are: Ti(1)–O(1) 1.953(2), Ti(1)–O(5) 1.976(2), Ti(1)–O(6) 2.014(2), Ti(1)–O(8) 1.781(2), Ti(4)–O(3) 1.955(2), Ti(4)–O(17) 2.040(2); O(1)–Ti(1)–O(7) 162.33(8), O(2)–Ti(1)–O(6) 165.22(8), O(5)–Ti(1)–O(8) 175.37(8), O(3)–Ti(4)–O(4) 172.56(8), O(16)–Ti(4)–O(18) 171.24(8), O(17)–Ti(4)–O(19) 171.83(8).

Fig. 2 Molecular structure of **2**. Thermal ellipsoids are shown at 60% probability. For clarity, hydrogens atoms are omitted and carbon atoms are represented by open circles. Selected interatomic distances (Å) and bond angles (°) are: Ti(1)–O(1) 1.903(2), Ti(1)–O(2) 2.160(2), Ti(1)–O(3) 1.938(2), Ti(1)–O(5) 2.004(2), Ti(1)–O(7) 2.014(2), Ti(1)–O(13) 1.765(2); O(1)–Ti(1)–O(7) 164.32(7), O(2)–Ti(1)–O(13) 177.29(7), O(3)–Ti(1)–O(5) 162.03(7).

slightly longer [Ti– μ_3 -O 2.107(2)–2.163(2) Å] than those *trans* to the phosphinato oxygen atoms [Ti– μ_3 -O 1.888(2)–1.938(2) Å]. Four sides of the Ti₄O₄ cube are capped by four phosphinato groups, each bridging two Ti atoms. This type of structure has been proposed for oxotitanium compounds modified by phosphonato ¹² or carboxylato ligands.¹⁸

The basic structural arrangement of 1 and 2 is retained in solution, as demonstrated by the ³¹P NMR data in solution and

in the solid-state.[†] In the field of organic–inorganic hybrids, these clusters present two main interests: first, as intermediates in the sol–gel route to hybrids that we are developing, secondly, as novel building blocks for the preparation of nanostructured hybrid materials.

Notes and references

† Syntheses: [Ti₄(µ₃-O)(OPrⁱ)₅(µ-OPrⁱ)₃(PhPO₃)₃]·DMSO 1. Ti(OPrⁱ)₄ (3.56 g, 12.52 mmol) was added to a solution of PhP(O)(OH)₂ (1.00 g, 6.33 mmol) in 5 mL of dried DMSO, resulting in a cloudy mixture. After several hours a clear solution was obtained. Colourless crystals of 1 were obtained from this solution after several days. These crystals were filtered off, washed with two 5 mL portions of Et₂O and dried in vacuo giving 1.02 g [40% yield based on PhP(O)(OH)₂]. Colourless needles suitable for single-crystal X-Ray diffraction were recrystallised from a concentrated DMSO solution and mounted in inert oil. Calc. for $C_{44}H_{77}O_{19}P_3STi_4$: C, 43.08; H, 6.78; P, 7.57; S, 2.61; Ti, 15.61. Found: C, 48.85; H, 6.52; P, 8.20; S, 3.22; Ti, 15.80. ^{31}P NMR: δ 8.45, 8.65 (CH₂Cl₂, 200 MHz), 8.0, 7.0 (solid-state, 400 MHz). [Ti(µ₃-O)(OPrⁱ)-(Ph₂PO₂)]₄·0.5DMSO 2. To a solution of Ti(OPrⁱ)₄ (1.00 g, 3.52 mmol) in 15 mL of dried DMSO was added dropwise a solution of Ph₂P(O)OH (767 mg, 3.52 mmol) and H₂O (34 µL, 1.88 mmol) in 15 mL of DMSO. After stirring at room temperature for 12 h, the resulting cloudy mixture was heated to 80 °C until a clear solution was obtained, which was then allowed to cool slowly to ambient temperature. The crystallised colourless needles were filtered off, washed with 3 mL dried DMSO and dried in vacuo giving 720 mg (58% yield) of 2. X-Ray quality crystals were obtained from a dilute DMSO solution and mounted in inert oil. Calc. for $C_{61}H_{71}O_{16.5}P_4S_{0.5}Ti_4$: C, 52.35; H, 5.48; P, 8.85; S, 1.15; Ti, 13.68. Found: C, 51.98; H, 6.30; P, 10.10; S, 1.37; Ti, 15.10. ³¹P NMR: δ 33.0 (CH₂Cl₂, 200 MHz), 33.3 (solid-state, 400 MHz).

‡ Data for both structures were collected on a STOE-IPDS with Mo-Kα radiation ($\lambda = 0.71073$ Å). Crystal data for 1 : C₄₄H₇₇O₁₉P₃STi₄ at 160 K, M = 1226.63, monoclinic, $P2_1/n$ (no. 14), a = 11.6668(13), b = 13.9198(12), c = 35.885(3) Å, $\beta = 90.533(15)^\circ$, V = 5827.5(10) Å³, $D_c = 1.398$ g cm⁻³, Z = 4, $\mu = 0.712$ mm⁻¹. Of the 27893 reflections, 5980 unique reflections were used in the final least-squares refinement on F_o^2 for 640 variable parameters to yield wR(all) = 0.0549 and R(obs) = 0.0249 for 4478 observed reflections $> 4\sigma(F_o)$. For **2** C₆₁H₇₁O_{16.5}P₄S_{0.5}Ti₄ at 180 K, M = 1399.69, monoclinic, $P2_1/c$ (no. 14), a = 12.4983(10), b = 16.1317(14), c = 33.706(3) Å, $\beta = 97.141(10)^\circ$, V = 6743.1(10) Å³, $D_c = 1.379$ g cm⁻³, Z = 4, $\mu = 0.630$ mm⁻¹. Of the 52425 reflections, 10165 unique reflections were used in the final least-squares refinement on F_o^2 for 793 variable parameters to yield wR(all) = 0.0607 and R(obs) = 0.0240 for 6423 observed reflections $> 4\sigma(F_o)$. CCDC reference number 186/1420. See http://www.rsc.org/supdata/dt/1999/1537/ for crystallographic files in .cif format.

- 1 L. G. Hubert-Pfalzgraf, Polyhedron, 1994, 13, 1181.
- 2 R. C. Mehrotra and A. Singh, *Chem. Soc. Rev.*, 1996, **25**, 1. 3 V. W. Day, T. A. Eberspacher, W. G. Klemperer and C. W. Park,
- *J. Am. Chem. Soc.*, 1993, **115**, 8469.
- 4 P. Judeinstein and C. Sanchez, J. Mater. Chem., 1996, 6, 511.
- U. Schubert, N. Hüsing and A. Lorenz, *Chem. Mater.*, 1995, 7, 2010.
 P. H. Mutin, C. Delenne, D. Medoukali, R. Corriu and A. Vioux, in *Mater. Res. Soc. Symp. Proc.*, 1998, 519, 345.
- 7 R. Papiernik, L. G. Hubert-Pfalzgraf, J. Vaissermann and
- M. Goncalves, J. Chem. Soc., Dalton Trans., 1998, 2285.
 8 T. J. Boyle, M. A. Todd, C. J. Tafoya and B. L. Scott, Inorg. Chem.,
- 1998, **37**, 5588.
- 9 A. Clearfield, *Prog. Inorg. Chem.*, 1998, **47**, 371.
- 10 G. H. Dahl and B. P. Block, *Inorg. Chem.*, 1967, **6**, 1439.
- 11 C. G. Lugmair and T. D. Tilley, Inorg. Chem., 1998, 37, 1821.
- 12 D. L. Thorn and R. L. Harlow, Inorg. Chem., 1992, 31, 3917.
- 13 J. R. Errington, J. Ridland, K. J. Willett, W. Clegg, R. A. Coxall and S. L. Heath, J. Organomet. Chem., 1998, 550, 473.
- 14 M. G. Walawalkar, S. Horchler, S. Dietrich, D. Chakraborty, H. W. Roesky, M. Schafer, H. G. Schmidt, G. M. Sheldrick and R. Murugavel, *Organometallics*, 1998, **17**, 2865.
- 15 S. A. A. Shah, H. Dorn, J. Gindl, M. Noltemeyer, H.-G. Schmidt and H. W. Roesky, J. Organomet. Chem., 1998, 550, 1.
- 16 J. Zubieta, Comments Inorg. Chem., 1994, 16, 153.
- 17 Y. D. Chang and J. Zubieta, Inorg. Chim. Acta, 1996, 245, 177.
- 18 X. Lei, M. Shang and T. P. Fehlner, Organometallics, 1997, 16, 5289.

Communication 9/02407G